
Multiplier Architecture with a Carry-Based
Partial Product Encoding

Martin Langhammer
Intel Corporation, UK

martin.langhammer@intel.com

Bogdan Pasca
Intel Corporation, France
bogdan.pasca@intel.com

Igor Kucherenko
Intel Corporation, US

igor.kucherenko@intel.com

Abstract—Multipliers have always been an important
component of computer architecture, but the increasing
relevance of Artificial Intelligence (AI) has brought about
a massive increase in the number of multipliers on all
compute platforms. At the same time, multiplier use for
signal processing has also increased unabated. Multiplier
architectures have not changed appreciably over the recent
past. In this paper, we introduce a new technique for
calculating partial products, which can be used with known
compression tree and adder combinations. We demonstrate
the efficiency of our new multiplier by reporting results from
800MHz to 2GHz in a current 7nm production library, and
comparing to the well-known modified Booth’s radix 4 and
radix 8 architectures.

Index Terms—multiplier, partial-product, encoding, carry-
chain

I. INTRODUCTION

AI requires many different precisions and performance
levels of multipliers. Low-precision multipliers (typically
INT8 or smaller) are typically used for inference. Higher
precision multipliers - often floating point, where a con-
siderable portion of the area is the mantissa multiplier
of low (UINT8 for bfloat16) or medium (UINT24 for
FP32) precision - are used for training. Traditional signal
processing applications are also increasing in functional
density, and require higher numbers of medium preci-
sion (INT16 or INT24) multipliers. All of this motivates
us to find the most efficient integer multiplier architec-
ture possible.

In the last 30 years since Bewick [1], there have been
few new multiplier architectures (which we define by the
partial product generation methods), and many imple-
mentations are still dependent on a modified version [2]
of Booth’s algorithm [3]. (In this paper, any following
references to Booth’s algorithm will be to the modified
form.) An alternate higher radix scheme [4] was devel-
oped for radices 32 and 256, using a compound of two
smaller radices to reduce the number of additions in the
partial product. Despite only using a single addition,
the partial product generation is very deep, and may
be prohibitively expensive for smaller multipliers.

Research has not stopped into other areas of multi-
plier use architectures: there are many soft-logic FPGA
multipliers published [5], [6], [7], including very high
precision cases [8], [9]. Decimal (rather than binary form)

multipliers [10], [11] for ASIC have also been studied.
The combination of many multipliers into dot prod-
ucts [12] is important for the construction of the vector-
vector kernels so common in AI.

Some recent works are useful for multiplier optimiza-
tion aside from the partial products, which we can use in
conjunction with our new methods. Power optimization
methods [13] and compression optimization [14] have
been reported. There are also recent results for carry
propagate adders [15], [16], [17]. These can be used at
the output stage, but can also be used during partial
product generations, e.g. to calculate the 2A + A value
for the Booth’s radix 8 partial products.

All of the higher order (greater than radix 2) schemes
use multiples of the multiplicand operand. In contrast,
our presented method will use properties of the multi-
plier operand.

We make two main contributions in this work:
• A new multiplier partial-product encoding scheme,

compatible with standard reduction (compression)
methods, which can be effectively used on even low-
precision multipliers.

• We describe future work, which can take advantage
of the reorganization of the delays of our proposed
method, to more effectively implement higher radix
multipliers.

II. ACKNOWLEDGEMENTS

After the review phase it was pointed out to us that
some elements of this work already exist in the fol-
lowing US patent (https://patents.google.com/patent/
US10466968B1/en). Our work was done independently
of this patent without any prior knowledge of its exis-
tence.

III. IMPLEMENTATION

Most multiplier architectures are currently based on
some variant of Booth’s encoding, which creates partial
products that are completely independent of each other.
This allows for many more degrees of freedom in syn-
thesis and placement, and is a major contributor to the
high-performance multiplier-based systems in use today.

An example of how Booth’s radix 4 encoding operates
is depicted in Figure 1 for an 8-bit multiplier. Two

Booth’s R4

Weight−Separated

b6b7 b5 b4 b3 b2 b1 b0 0

−2b1 + b0 + b−1−2b3 + b2 + b1−2b5 + b4 + b3−2b7 + b6 + b5

b0 + b−1−b1b2 + b1−b3b4 + b3−b5b6 + b5−b7

+b3+b5 +b1

Fig. 1: Radix-4 Modified Booth Encoding for an 8-bit input. Weight-Separated encoded terms shown on the bottom
of the figure, highlighting the redundancy aspect of the encoding.

TABLE I: Booth’s Radix 4 Encoder

b2j+1 b2j b2j−1 B M B + b2j−1 CO
CO CI b2j+1:2j

0 0 0 0 0 0 0
0 0 1 0 1 1 0
0 1 0 1 1 1 0
0 1 1 1 2 2 0
1 0 0 2 -2 2 1
1 0 1 2 -1 3 1
1 1 0 3 -1 3 1
1 1 1 3 0 4 1

Encoder Encoder Encoder Encoder

COUT CIN CIN CINCOUT COUTCOUT CIN

b6b7 b5 b4 b3 b2 b1 b0 0

Fig. 2: Modified Booth’s Radix-4 Chained Encoders rep-
resented as modules with carry-in and carry-out.

bits are encoded at a time, using a window of 3 bits
from the input. Successive 3-bit windows have a 1-
bit overlap. All dibits may be encoded in parallel as
there are no direct dependencies between encoded dibits.
The information carry-over between dibits is avoided
by using the overlapping 3-bit windows. Nonetheless,
the set of encoders may be depicted as a carry-chain
structure, where the carry-out and carry-in of adjacent
encoders correspond to the same input bit – as shown
in Figure 2. Table I shows Booth’s radix 4 encoding and
Eq. 1 explicitly states the encoding equation.

Bj = −2b2j+1 + b2j + b2j−1 (1)

The M reported in Table I is the value for generating
a partial product between encoded dibit Bj and the
multiplicand A. Operations on signed operands encoded
in 2’s complement are generally implemented using a
1’s complement (inversion), followed by the addition
of the sign bit back into the vector to complete the 2’s
complement representation. The addition of the sign bit
will require a carry operation, so all of the sign bits are
combined into a single vector, and compressed with the
rest of the partial products.

In one way, Booth’s encoding operates as a CSD
(canonic signed digit) arithmetic system. A run of ‘1’
bits can be replaced by a single ‘1’ at the first ‘0’ after
the MSB of the run, and a subtraction of a ‘1’ at the LSB
of the run.

Our new method can be understood by restating the
Booth’s radix 4 codes in a CSD-like form, which is shown
in Table II. The CI is the MSB of the previous dibit, B is
the current dibit, which can have values “00”, “01”, “10”,
and “11” while CO is the carry out, which is the MSB of
the current dibit into the next dibit, or can be alternately
seen as the ‘1’ after the run of ‘1’s in the current dibit.
The operation on the multiplicand to make the partial
product is denoted by M. For simplicity, and to avoid
carries across the different encoders, “2” is treated as
a run of ‘1’s. To make the coding correct the operation
for 2 is a -2x, which is the CO*22-2. In other words, the
operation is x(4-2) = x2, which is what we want here.

Now we will do something counter-intuitive, and
modify the encoding such that the multiplication by 2 is
directly encoded as a x2 operation, as opposed to a x(4-
2) operation. In other words, rather than coding the CO
as the MSB of the B value (which will enter as a carry-in
into the next dibit with weight 4), we will code the B
as a x2, but only of the CI = 0 and in this case we will
force the CO = 0. This means that encoding the current
dibit will now depend not only on the overlapping 3-bit
multiplier windows bits, but on the previous CIs as well.

But now we need a carry across the encoders again.
Fortunately, this turns out to be inexpensive. We will
define this carry-chain differently, because it will be
across the dibit, rather than down a column. A CO is
defined if there is either a generate or a propagate across
the dibit. A generate occurs if there is a carry in and the
dibit is 2 or greater, and a propagate occurs if the dibit
is 3. The simplified generate and propagate equations
(Eq. 2 and Eq. 3) used in our method are identical to the
known equations used for carry-propagate adders.

pi = b2j+1 (2)
gi = b2j+1 · b2j (3)

TABLE II: Alternate form of the Booth’s 4 Encoding. It
replaces the "-2" entry with "+2", and modifies the carry-
out from the encoder into the next encoder.

CI B M CO
0 0 0 0
0 1 1 0
0 2 +2 0
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1

0123456715 14 13 12 11 10 9 8

B[2:1]

B[4:3]

B[6:5]

B[2N:2N−1]

...

0

Prefix Tree

p/g signals formula

B

S
c
a

le
 F

a
c
to

rs

Encoder 1

Encoder 2

Encoder 3

Encoder N

Fig. 3: Applying a Carry Chain to the Encoders.

We can use a prefix tree, or a CLA, to calculate
this across all encoders, similar to the way a normal
CPA is implemented, although here we have a different
(horizontal vs. vertical) definition of the generate and
propagate conditions. An implementation is shown in
Figure 3. We call our method B4G3 (Booth’s 4, Generate
3), for the form of Booth’s radix 4 CSD structure, modi-
fied with a carry condition when the dibit is 3.

A. Encoder Structure
Figures 4 and 5 show the new partial product gen-

erator structure. The encoder, depicted in Figure 4, is
only instantiated once per partial product. There are only
two multiplier operand bits used (b2j and b2j+1) - the
CIN input is the output of the carry chain, i.e. the prefix
structure of Figure 3.

The partial product mux depicted in Figure 5 is ap-
plied at every bit position of each partial product. Note
that the ’−2A’ value no longer needs to be considered,
saving an AND gate and reducing the number of inputs
to the OR gate by one (from four to three).

B. Analysis - Why this Works
At first glance, this approach adds complexity and

significant logic depth to the Booth’s radix 4 structure,

0
1

sign

CIN

S2

S1

S−1b2j+1

b2j

Fig. 4: B4G3 Encoder

S1

A

S−1

S2

2A

PP

Fig. 5: B4G3 Partial Product Mux

while removing only a single mux input in the partial
product encoding. But if we look at the area impact, we
can see that the number of gates is significantly reduced.
The representative prefix tree shown in Figure 3 has 16
inputs, which is for a relatively large example (multiplier
operand precision of 32-bits). A 16-bit multiplier would
have less than half this complexity, with 11 dots in the
Brent-Kung prefix tree. The number of gates in this struc-
ture is approximately 33 individual gates. Removing a
mux input (16-bits) from the 8 partial products would be
about 256 individual gates (2 gates×16 bits×8 vectors) a
significant difference which can be used by the synthesis
tool to make a measurable improvement in the area
and/or speed of the multiplier.

ASIC libraries contain components implementing
compound gates, so the area saving with vary from
process node to process node, but our proposed method
will provide a useful resource reduction.

IV. RESULTS

Figure 6 shows the R4G3 multiplier architecture re-
sults (for an example 12x12 signed multiplier) compared
to the Synopsys Designware [18] multipliers for both
Booth’s radix 4 and radix 8 encoding. Our R4G3 multi-
plier uses the DesignWare compressor [19] and final CPA
cores. The vertical axis shows the reported area (µm2) in
an Intel 7nm production library. All the reported areas
are for synthesized, not placed and routed, results. The
graph shows that the proposed multiplier outperforms
both Synopsys multipliers for frequency goals ranging
from 800MHz to 2.1GHz. Above this threshold the Syn-
opsys Booth’s radix 4 (B4) shows better results.

V. FUTURE WORK

We can also combine both our new method and known
methods into a single structure, as shown in Figure 7.
Our described method introduces an additional delay
in the multiplier operand side (via the carry network,
which we are implementing with a prefix tree in our
example). Nonetheless, the overall number of gates in

30

40

50

60

70

80

90

800 1000 1200 1400 1600 1800 2000 2200

Ar
ea

 (u
m

2)

Frequency (MHz)

B4G3
B4
B8

Fig. 6: Area comparison of R4G3, Booth’s R4, Booth’s R8
- Swept from 800MHz to 2.2 GHz - 12x12 Signed Case.

0123456715 14 13 12 11 10 9 8

B[2:1]

B[4:3]

...

0

Prefix Tree

p/g signals formula

B

B[7:5]

B[2N:2N−2]

B[4:1]
A

A, 2A, 4A 3A

New B4 PP Mux 2

New B4 PP Mux 1

B8 PP Mux 1

B8 PP Mux K

......

New B4 Encoder

New B4 Encoder

B8 Encoder 1

B8 Encoder K

Fig. 7: Mixed Radix

the partial product generation is reduced by a sizeable
amount.

Higher radix partial-product methods (such as Booth’s
radix 8) instead introduce a delay in the multiplicand
operand side (shown in Figure 7 by the 3A value,
which also requires a carry-chain implementation) but
can reduce the number of gates and overall latency by
reducing the number of partial products. Using a mix of
the two methods may produce even better results.

VI. CONCLUSIONS

With the increasing densities of multipliers, efficient
architectures are needed more than ever. Although re-
search in arithmetic structures (such as compressors and
adders) is still yielding results, little progress in partial
product generation seems to have occurred recently.

We have described a new approach to multiplier
partial-product generation that uses a carry-propagate
structure to select partial product values. Previous high-
radix approaches introduced a carry-propagate calcula-
tion to the multiplicand operand. Our proposed method

instead uses the carry-propagate on the multiplier
operand. We have shown that this significantly reduces
the gate count in the partial-product generation, which
translates to a smaller, faster multiplier implementation.

Finally, we have proposed follow-on experiments,
where the carry-based encoding can be combined with
higher radix (e.g. radix 8) partial-product generation.

REFERENCES

[1] G. W. Bewick, “Fast multiplication: Algorithms and implementa-
tion,” Ph.D. dissertation, Stanford University, Feb. 1994.

[2] O. L. Macsorley, “High-speed arithmetic in binary computers,”
Proceedings of the IRE, vol. 49, no. 1, pp. 67–91, Jan 1961.

[3] A. D. Booth, “A signed binary multiplication technique,”
The Quarterly Journal of Mechanics and Applied Mathematics,
vol. 4, no. 2, pp. 236–240, 1951. [Online]. Available: +http:
//dx.doi.org/10.1093/qjmam/4.2.236

[4] P.-M. Seidel, L. McFearin, and D. Matula, “Binary multiplication
radix-32 and radix-256,” in Proceedings 15th IEEE Symposium on
Computer Arithmetic. ARITH-15 2001, 2001, pp. 23–32.

[5] M. Langhammer and G. Baeckler, “High density and performance
multiplication for FPGA,” in 25th IEEE Symposium on Computer
Arithmetic, ARITH 2018, Amherst, MA, USA, June 25-27, 2018,
2018, pp. 5–12. [Online]. Available: https://doi.org/10.1109/
ARITH.2018.8464695

[6] E. G. Walters, “Partial-product generation and addition for mul-
tiplication in FPGAs with 6-input LUTs,” in 2014 48th Asilomar
Conference on Signals, Systems and Computers, Nov 2014, pp. 1247–
1251.

[7] M. Kumm, S. Abbas, and P. Zipf, “An efficient softcore multiplier
architecture for Xilinx FPGAs,” in 2015 IEEE 22nd Symposium on
Computer Arithmetic, June 2015, pp. 18–25.

[8] M. Kumm, O. Gustafsson, F. de Dinechin, J. Kappauf, and P. Zipf,
“Karatsuba with rectangular multipliers for FPGAs,” 2018 IEEE
25th Symposium on Computer Arithmetic (ARITH), pp. 13–20, 2018.

[9] M. Langhammer and B. Pasca, “Folded integer multiplication
for FPGAs,” in The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 160–170.
[Online]. Available: https://doi.org/10.1145/3431920.3439299

[10] M. Erle, E. Schwarz, and M. Schulte, “Decimal multiplication with
efficient partial product generation,” in 17th IEEE Symposium on
Computer Arithmetic (ARITH’05), 2005, pp. 21–28.

[11] A. Vazquez, E. Antelo, and P. Montuschi, “A new family of high-
performance parallel decimal multipliers,” in 18th IEEE Sympo-
sium on Computer Arithmetic (ARITH ’07), 2007, pp. 195–204.

[12] S. Boldo, D. Gallois-Wong, and T. Hilaire, “A correctly-rounded
fixed-point-arithmetic dot-product algorithm,” in 2020 IEEE 27th
Symposium on Computer Arithmetic (ARITH), 2020, pp. 9–16.

[13] C. Walter and D. Samyde, “Data dependent power use in multipli-
ers,” in 17th IEEE Symposium on Computer Arithmetic (ARITH’05),
2005, pp. 4–12.

[14] K. C. Bickerstaff, E. E. Swartzlander, and M. J. Schulte, “Analysis
of column compression multipliers,” in Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, ser. ARITH ’01. USA: IEEE
Computer Society, 2001, p. 33.

[15] N. Burgess, “The flagged prefix adder and its applications in
integer arithmetic,” J. VLSI Signal Process. Syst., vol. 31, no. 3,
pp. 263–271, Jul. 2002. [Online]. Available: http://dx.doi.org/10.
1023/A:1015421507166

[16] A. Beaumont-Smith and C.-C. Lim, “Parallel prefix adder de-
sign,” in Proceedings 15th IEEE Symposium on Computer Arithmetic.
ARITH-15 2001, 2001, pp. 218–225.

[17] S. Knowles, “A family of adders,” in Proceedings 15th IEEE Sym-
posium on Computer Arithmetic. ARITH-15 2001, 2001, pp. 277–281.

[18] Synopsys, DW02_mult, 2023, https://www.synopsys.com/dw/
ipdir.php?c=DW02_mult.

[19] ——, DW02_tree, 2023, https://www.synopsys.com/dw/ipdir.
php?c=DW02_tree.

